\qquad

Date Due: December 2, 2011

1. Which is an equation of the line that passes through the point $(-1,5)$ and is parallel to the y-axis?
(1) $y=-1$
(3) $x=-1$
(2) $y=5$
(4) $x=5$
2. If point A is not on plane P, how many lines can be drawn through point A that are parallel to plane P ?
(1) 1
(2) 2
(3) 0
(4) infinite
3.

In the diagram, parallel lines l and m are cut by transversal t. Which statement about angles 1 and 2 must be true?
(1) $\angle 1 \cong \angle 2$.
(2) $\angle 1$ is a complement to $\angle 2$.
(3) $\angle 1$ is a supplement to $\angle 2$.
(4) $\angle 1$ and $\angle 2$ are right angles.
4. If C is the midpoint of $\overline{A B}$ and D is the midpoint of $\overline{A C}$, which statement is true?
(1) $A C>B C$
(2) $A D<C D$
(3) $D B=A C$
(4) $D B=3 C D$
5. Which letter has point symmetry but not line symmetry?
(1) \mathbf{H}
(3) T
(2) \mathbf{S}
(4) \mathbf{X}

6 . The point $R(-2,5)$ is reflected in the x-axis. In which quadrant does the image of point R lie?
(1) I
(3) III
(2) II
(4) IV
7. Let p represent "The outside temperature is $30^{\circ} \mathrm{C}$," and let q represent "It is summer."
Write in symbolic form, using p and q, "If it is not summer, then the outside temperature is not $30^{\circ} \mathrm{C}$."
(1) $p \rightarrow q$
(2) $\sim p \rightarrow \sim q$
(3) $\sim q \rightarrow \sim p$
(4) $q \rightarrow p$
8. In three-dimensional space, two planes are parallel and a third plane intersects both of the parallel planes. The intersection of the planes is a
(1) plane
(2) point
(3) pair of parallel lines
(4) pair of intersecting lines
9. A translation moves $P(4,4)$ to $P^{\prime}(6,1)$. Find the coordinates of the image of $(-3,2)$ under the same translation.
(1) $(-5,5)$
(3) $(2,-3)$
(2) $(-6,4)$
(4) $(-1,-1)$

Short Answer

Please show all work on a separate piece of paper and/or graph paper.
10. Given the points $A(2,3), B(-4,3), C(5,-1)$, and $D(1, k)$. If $\overline{A B} \| \overline{C D}$, find the value of k.
11. The slope of $\stackrel{\leftrightarrow}{R U}$ is $\frac{3}{5}$. If $\stackrel{\leftrightarrow}{R U} \| \stackrel{\leftrightarrow}{S T}$ and the slope of $\stackrel{\leftrightarrow}{S T}$ is $\frac{x-6}{x}$, what is the value of x ?
12. In the accompanying diagram, $\overrightarrow{A E B} \| \overrightarrow{C F G}, \overline{E G}$ bisects $\angle B E F$, and $\mathrm{m} \angle E F C=86$. Find $\mathrm{m} \angle E G F$.

13. What is the equation for the perpendicular bisector of the line segment whose endpoints are $(-7,2)$ and $(-1,-6)$?
14. The coordinates of $\triangle J R B$ are $J(1,-2), R(-3,6)$, and $B(4,5)$. What are the coordinates of the vertices of its image after the transformation $T_{2,-1}{ }^{\circ} r_{y \text {-axis }}$
15. If a line segment has endpoints $A(3 x+5,3 y)$ and $B(x-1,-y)$, what are the coordinates of the midpoint of $\overline{A B}$?
16.

Rectangle $\boldsymbol{A} \boldsymbol{B} \boldsymbol{C} \boldsymbol{D}$	Rectangle $\boldsymbol{A}^{\prime} \boldsymbol{B}^{\prime} \boldsymbol{C}^{\prime} \boldsymbol{D}^{\prime}$
$A(2,4)$	$A^{\prime}(3,1)$
B	$B^{\prime}(-5,1)$
$C^{\prime}(2,-1)$	$C^{\prime}(3,-4)$
$D(-6,-1)$	D^{\prime}

A design was constructed by using two rectangles $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the result of a translation of rectangle $A B C D$. In the table of translations, what are the coordinates of points B and D^{\prime} ?
17. If $\overleftrightarrow{A B}$ intersects $\overleftrightarrow{C D}$ at $E, \mathrm{~m} \angle A E C=3 x$, and $\mathrm{m} \angle A E D=5 x-60$, find the value of x.
18. Determine the distance between point $A(-1,-3)$ and point $B(5,5)$.

